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Abstract
Purpose – The purpose of this paper is to advance knowledge of the transformative potential of big data on
city-based transport models. The central question guiding this paper is: how could big data transform smart
city transport operations? In answering this question the authors present initial results from a Markov study.
However the authors also suggest caution in the transformation potential of big data and highlight the risks
of city and organizational adoption. A theoretical framework is presented together with an associated
scenario which guides the development of a Markov model.
Design/methodology/approach – A model with several scenarios is developed to explore a theoretical
framework focussed on matching the transport demands (of people and freight mobility) with city transport
service provision using big data. This model was designed to illustrate how sharing transport load (and
capacity) in a smart city can improve efficiencies in meeting demand for city services.
Findings – This modelling study is an initial preliminary stage of the investigation in how big data could be
used to redefine and enable new operational models. The study provides new understanding about load sharing
and optimization in a smart city context. Basically the authors demonstrate how big data could be used to
improve transport efficiency and lower externalities in a smart city. Further how improvement could take place
by having a car free city environment, autonomous vehicles and shared resource capacity among providers.
Research limitations/implications – The research relied on a Markov model and the numerical solution
of its steady state probabilities vector to illustrate the transformation of transport operations management
(OM) in the future city context. More in depth analysis and more discrete modelling are clearly needed to
assist in the implementation of big data initiatives and facilitate new innovations in OM. The work
complements and extends that of Setia and Patel (2013), who theoretically link together information system
design to operation absorptive capacity capabilities.
Practical implications – The study implies that transport operations would actually need to be re-organized
so as to deal with lowering CO2 footprint. The logistic aspects could be seen as a move from individual firms
optimizing their own transportation supply to a shared collaborative load and resourced system. Such ideas
are radical changes driven by, or leading to more decentralized rather than having centralized transport
solutions (Caplice, 2013).
Social implications – The growth of cities and urban areas in the twenty-first century has put more
pressure on resources and conditions of urban life. This paper is an initial first step in building theory,
knowledge and critical understanding of the social implications being posed by the growth in cities and the
role that big data and smart cities could play in developing a resilient and sustainable transport city system. International Journal of Operations
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Originality/value – Despite the importance of OM to big data implementation, for both practitioners and
researchers, we have yet to see a systematic analysis of its implementation and its absorptive capacity
contribution to building capabilities, at either city system or organizational levels. As such the Markov model
makes a preliminary contribution to the literature integrating big data capabilities with OM capabilities and
the resulting improvements in system absorptive capacity.
Keywords Absorptive capacity, Big data, Supply chain integration, Load sharing, Transport operations
Paper type Research paper

Introduction
Big data has the potential to revolutionize the art of supply chain management (SCM).
However in spite of its widely reported strategic impacts, there is a paucity of empirical
research exploring its influence on operations and production management. In this work we
extend the findings of our framework and modelling study to examine a potential scenario
of how big data on transportation capacity may impact on future cities SCM. Fosso-Wamba
et al. (2015, p. 235) define big data as: “a holistic approach to manage, process and analyze
the five Vs (volume, velocity, variety, veracity and value) in order to create actionable
insights for sustained value delivery, measuring performance and establishing competitive
advantages”. Meanwhile, accompanying the dramatic rise in the “velocity” and “volume” of
city data, the growth of urbanization has been dramatic in the last decade. Indeed, according
to Lierow (2014), it is expected that 70 per cent of the world’s population will live in cities by
2050. This rate has increased the pressure for adjusting the actual infrastructures, and
investing in new ones, in order to support the flow of goods and people, as well as to
minimize the associated impact related to environmental degradation and quality of life
(Caragliu et al., 2011).

To manage this issue, an increasing number of cities around the world are adopting the
concept of “smart cities” (Allwinkle and Cruickshank, 2011). A smart city is: “a city seeking
to address public issues via information and communication technology-based solutions on
the basis of a multi-stakeholder, municipally based partnership” (Manville et al., 2014, p. 24).
Further it has been theorized that a “big data” logistics system could be constructed on the
“social materiality” or “superstructure” of a smart city (Leonardi, 2013).

Big data logistics can be defined as the modelling and analysis of urban transport and
distribution systems, through large data sets created by GPS, cell phone and transactional
data of company operations (Blanco and Fransoo, 2013). The demands and requirements of
city logistics are changing on a daily basis through innovations in technologies with smart
computing. Increasingly the real-time tracking of vehicles could facilitate more accurate
resource pooling and capacity sharing. The logistic firm therefore requires more technical
and technological support to handle the five Vs (Fosso-Wamba et al., 2015).

City authorities and communities are using ever-growing bodies of data to improve their
understanding of citizen behaviour, service usage and also to build service transparency
and accountability. With the growth of big data there is privacy surveillance and data
misuse challenges (Moir et al., 2014). Cities also face challenges around quality,
comprehensiveness, collection and the analysis of data from various sources. However,
big data also needs to be robust, accessible and interpretable if it is to provide cities and
organizations with meaningful opportunities and solutions.

Future city operations managers need strategic tools to help them realize a vision of an
efficient and effective urban transportation network. For instance, in the city of Santander
(in northern Spain) there are 20,000 sensors connecting buildings, infrastructure, transport,
networks and utilities, offering a physical space for experimentation and validation of
internet of things (IoT) functions[1].

The aim of this paper is to make a contribution to operations theory by exploring how
big data will transform smart city transport operations. Furthermore, any smart city
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transportation solution based on big data would inevitably impact on the supply chain
components that are inextricably linked with road transportation. Therefore, we also aim to
offer a commentary of what this transformation could potentially mean for the practice of
future SCM. In order to meet this aim we present results from a Markov study using its
numerical solutions. This work is theoretically positioned to complement and extend the
seminal articles of Fosso-Wamba et al. (2015) and Setia and Patel (2013) who theoretically
explore the impact of technological absorptive capacity on logistics performance.

The paper is structured as follows: in the literature review we define big data and also
highlight the risks and challenges of its integration into city-operations management (OM).
An initial organizing framework is then presented, together with an associated scenario.
In the fourth section, the research method and details of the modelling procedure are
outlined. This is followed by the results section in which the initial framework is advanced
through the development of smart city logistics operations model. In the final section, we
outline the theoretical contribution of the work, its practical impact and suggest some future
research avenues.

Big data: limitations, risks and challenges
With the advent of the smart city there is starting to emerge a body of literature exploring
the motivations of city operations designers to adopt big data (Scott, 2014). For instance,
there is work exploring how software solutions like SAS2 can be applied to improve the
time performance of the public transportation sector (Biederman, 2013). A number of
studies predict the future development and impact of big data logistics. With respect to its
process adoption there is recent research demonstrating that 30 per cent of the shippers
and 27 per cent of the third party logistics (3PL) providers, stated that they were planning
on adopting a big data initiative to improve delivery capability (Burnson, 2013). There are
several papers describing the advantages that big data can play in the process of
information and data retrieval. Mehmood et al. (2015) note that the cost of healthcare,
according to World Health Organization is mostly due to system and operational
inefficiencies; and that Big Data Analytics can minimize these inefficiencies and improve
the clinical processes resulting in better, preventive, personalized healthcare. Most
notably McCrea (2013) explains which big data processes are important to the area of
transport management. These include: cleansing, harmonizing, combining and
standardizing data, as well as data visualization.

The volume and velocity of data capture is much greater in a smart city environment.
For instance, Miller (2013) describes new ways of gathering big data by crowdsourcing.
The use of geographical information system as a source of big data is also examined
by McKinsey Global Institute (Manyika et al., 2011) who also indicates sensors,
GPS and social media as new data sources. The smart city practitioner could use such
data for smart routing, car monitoring and localized services. It also holds benefits for
both the government (e.g. urban planning) and companies (e.g. localized advertising,
optimized routing).

However, it must be noted that big data also brings much greater complexity to logistics
planning because of the five Vs. Volume or the large amount of data that either consume
huge storage or entail of large number of records data (Russom, 2011). Velocity which is the
frequency or the speed of data generation and/or frequency of data delivery (Russom, 2011,
p. 2). Variety to highlight that it is generated from a large variety of sources and formats and
it is contained in multidimensional data fields (including structured and unstructured data,
Russom, 2011, p. 3).

Drawing on these definitions, Fosso-Wamba et al. (2015), include another two Vs, that is
value (or the fourth of the Vs) in order to stress the importance of extracting economic
benefits from the available big data (p. 235). They also argue that a fifth dimension
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“Veracity” should be added to prior definitions of big data in order to highlight the
importance of quality data and the level of trust in various data sources data (Fosso-Wamba
et al., 2015, p. 234).

There are significant challenges in implementing big data at the operational and
process levels (Fosso-Wamba et al., 2015, p. 234). This is a view supported by Li et al.
(2016) who note that gathering and analysing more data does not always correlate
with improved operational performance: “not everything can be digitised; and we
cannot assume that automation is always advantageous to OM; this is because our
ability to handle large amount of data (in real-time) and use it to make both rapid and
effective operational interventions in the cityscape, is limited. For instance, does
having more freight and passenger data solve traffic congestion?” (p. 10). Likewise,
assuming that possessing more data provides necessarily better models of reality
may be an over-simplistic assumption. For example, although big data are very
effective when detecting correlations, it may fail when pinpointing which correlations are
meaningful.

Risks and challenges
The major risks identified in the literature are summarized in Table I. They can be further
categorized with respect to whether they are: “preventable risks”, “strategy risks” and
“external risks” (Kaplan and Mikes, 2012, p. 21).

Preventable risks are internal risks that should be actively controlled for and
avoided where possible. For instance, this would include data sharing, ownership, data
cleaning and meeting compliance standards (Rigby, 2015; Kitchin, 2014). Strategy risks
are rational, calculated risks that a smart city practitioner might take in order to seek
advantage or competitive gain. This would include: decentralization and re-orienting
global to local production logistics through the establishment of mini-factories (e.g.
the production of medical products and supplies for local hospitals, Mourtzis and
Doukas, 2013).

External risks are largely beyond the practitioners’ control. For example, in Table I this
would refer to the volume of unstructured data (Whitier, 2014) or whether there is a
sufficient enough pool of skilled data scientists to enable big data process capabilities to be
achieved (Bruner, 2015).

Big data are also paving the way for the integration of operational, information, business,
quality and other dimensions of enterprise. See Ji-fan Ren (2016), for example, where the
authors examine the quality dynamics in big data environment that are linked with enhancing
business value and firm performance. Also see Ahmad and Mehmood (2015, 2016) where
enterprise systems and their performance are discussed in relation to smart cities,

Risks and challenges Big data projects Key authors

Interpretation error Personalized drugs using real-time data Bielinski et al. (2014)
Data sharing Retailing moving to a feedback economy Rigby (2015)
Data ownership Centro De Operacoes Prefeitura Do Rio Kitchin (2014)
Compliance issues City logistics on a cloud platform Xu et al. (2014)
Talent management The industrial internet Bruner (2015)
Privacy invasion Crowdsourcing and the last mile pick-up Gue (2014)
Security breaches Banks and credit risk checks Kural and Billens (2015)
Data analytical tools City-healthcare (ambulance) Mehmood and Lu (2011)
Agility Toyota (city) supplier network Manyika et al. (2011)
Strategic re-alignment Decentralized “Mini factories” Mourtzis and Doukas (2013)
Unstructured data IBM/Motorola Retail presence Whitier (2014)

Table I.
Big data risks
and challenges
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sustainability and logistics. The potential of logistics prototyping to develop “user-driven”
and “SME” approaches to future city design and urban supply chain decision making is
explored in Graham et al., (2015).

Smart city transport operations framework
Future cities are expected to embrace new technologies and the planning of operational-
related activities. These include transportation and healthcare which will be more
dynamic than has been the case. Big data will play an important role in providing
innovative day to day and emergency services in the cities (Alazawi et al., 2014b). Urban
planners will be able to react to the emerging changes in demand within a much shorter
period of time.

Autonomous vehicles and autonomic computing systems appear, currently, to be
the main approaches that could improve efficiency and reliability and hence the
sustainability of city transport and operations systems (Schlingensiepen et al., 2014;
Schlingensiepen and Nemtanu, 2016). Using emerging technologies, such as IoT, it will be
easier to measure and monitor the carbon footprint of transport-related activities at a
micro-level. A city rich in sensors will be able to assess the health of the whole city and
provide the necessary logistics data to policy makers enabling them to make decisions at
operational levels with a much shorter time span of implementation.

The framework presented in Figure 1 is based on a scenario of a future city
transportation centre. In which the capacity and demand of the city can be analysed in real-
time. In such a city the transportation centre is the sole authority to plan and manage
demand. This scenario would only allow autonomous vehicles in the city.

The above was designed to provide a scenario for guiding the development of a Markov
model. This transport centre monitors events in the city using sensor networks, big data and
the IoT. The centre takes real-time, short-term and long-term actions based on the
operational data received. These actions may require immediate actions such as: making
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amendments in the traffic signalling schedules and dispatching additional autonomous
vehicles to specific city zone(s) to meet the real-time and emerging demands. Consider a
scenario where all the transport demand is planned and managed by the city transportation
authority. It is able to receive various demand data for activities including: freight,
healthcare, shopping and leisure, work and school.

The data received can provide operational insight into short-run and long-run demand
for activities affecting transport flows in the city. The data can also be live streamed data
including the five Vs. For example, an intercity match in the city football stadium, which is
being held in one month’s time, would represent short-run demand data. Whilst the
construction of a megamall in five years’ time would be identified as long-run data, a major
accident in the city centre a few minutes ago would be identified as a real-time shift in
transportation demand.

Research method
Markov chains, Markov decision processes (MDPs), queuing theory and discrete state
models are widely used analysis, optimization and decision-making tools. Markov chains
allow systems of interest to be modelled as stochastic processes and the modelled systems
can be analysed for their steady-state or time-dependent behaviour. Performance measures
such as delay, blocking probability and utilization of a system can be calculated by
computing the probability distributions of Markov chains. MDPs allow systems to be
modelled as optimization problems.

Queuing theory based models allow systems of interest to be modelled as queues, or
network of queues, with a certain arrival and service rate. Such formulations can be used to
analytically calculate measures of interest including job loss probabilities and waiting times
in the system. Arrival, queuing, service and departure are inherent in many science and
technology problems and therefore many interesting systems can be formulated as queuing
models. Markov chains, MDPs and queuing theory are considered discrete state modelling
tools because the modelled system is composed of discrete states making transitions from
one state to another under certain constraints. Worthington (1987, 1991) notes that queuing
theory continues to be one of the most researched areas of city operations with its
applications in coal mining, call centres, office processing and retail (in addition to transport,
telecommunications and healthcare).

Worthington (1987) identifies five dimensions of queuing based modelling: single,
multi- and infinite server(s); exponential versus non-exponential, steady-state versus
time-dependent analyses; single node, tandem queues; networks of queues; and extra
features such as priority queues and server vacations. Worthington (1991) also identifies
three distinct approaches in queuing based analysis: analytic formulations and formulae;
analytic formulations and numeric solutions and models.

Batty (2012, 2013) notes there is a critical need for understanding of big data explanatory
models, based on explicit modelling assumptions, with predictive power. He strongly
supports the use of concepts such as agent-based modelling (based on modelling each
component of a system as a software agent), flocking (emulating or copying others’
behaviour applied in artificial intelligence and software models) and graph theory. Markov
chains, he suggests, provides an excellent starting point for big data analysis. Once a
system has been modelled using this approach, its performance measures of interest can be
derived by generating and solving a Markov chain. The transient behaviour of a continuous
time Markov chain (CTMC) is described by the Chapman-Kolmogrov differential equation:

dp tð Þ
dt

¼ p tð ÞQ (1)
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where Q∈ℝn×n is the infinitesimal generator matrix, and π(t)¼ [π1(t), π2(t),…, πn(t)] is
the transient state probability row vector. The vector πi(t) denotes the probability of the
CTMC being in state i at time t, and π0 is the initial probability distribution vector which
equals π(t) at t¼ 0.

The steady state behaviour of a CTMC is given by:

pQ ¼ 0;
Xn�1

i¼0

pi ¼ 1 (2)

where π¼ limt→∞π(t) is the steady state probability vector, which exists for an
ergodic CTMC. The order of the infinitesimal generator matrix Q equals the number of
states in the CTMC. The off-diagonal elements of the matrix Q satisfy qij∈ℝ⩾ 0,
and the diagonal elements are given by qii ¼ �P

ja iqij. The matrix Q usually is very
sparse; further details about the properties of these matrices can be found in
Stewart (1991). The steady state equation given above can be reformulated as QTπT¼ 0,
and the well-known methods for the solution of systems of linear equations of the form
Ax¼ b can be used; see Stewart (1991) and Kwiatkowska et al. (2011). The numerical
solution methods for linear systems of the form Ax¼ b are broadly classified into
direct methods and iterative methods. For large systems, direct methods become
impractical due to the phenomenon of fill-in, caused by the generation of new
entries during the factorization phase. Iterative methods do not modify matrix A,
rather, they involve the matrix only in the context of matrix-vector product.
The term iterative method refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear system at each step.
Since we deal with very large Markov chains, we mainly use iterative methods to solve
the numerical models.

A major hurdle in the applicability of these tools to complex and large problems is the
“curse of dimensionality problem”. This is because models for even trivial real life systems
comprise of millions of states and hence require prohibitively large computational resources.
This problem led to the development of several techniques designed to provide alternative
strategies to solve large systems, such as concurrent, parallel and distributed computing
techniques.

Computational methods to solve large models
We have previously developed computational strategies for the numerical solution of
Markov chains, to exploit the developments in computational infrastructures and
techniques which minimize the use of the resources (see Mehmood, 2004a, b; Mehmood
and Crowcroft, 2005; Kwiatkowska et al., 2002, 2004; Kwiatkowska and Mehmood, 2002).
The range of computational techniques which we have developed to resource minimize,
include the following: compact data structures which exploit model details to minimize
the memory and computational requirements; out-of-core techniques which use
concurrent programming (multithreading) and disk storage to efficiently store and
retrieve large models; and parallel computing techniques to use memory and
computational power of multiple machines. For instance, the solution of CTMC models
on single workstation as well as on parallel machines with over 1.2 billion states
(equivalently, a linear system with 1.2 billion unknowns and equations) and 16 billion
transitions.

Traditional solution methods will require over a 100 GB of memory to store and solve
such large systems, implying that these systems cannot be solved on a single
contemporary workstation and will require fairly huge computational resources. This
paper’s framework coupled with this earlier work on the solution of large Markov models
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provides a promising approach for big data technologies and solutions to supplement
previous applications of queuing theory (Parra-Frutos and Freeman, 2000; Freeman and
Burdon, 2013; Anderson et al., 2014).

Data and the capacity measure used in the Markov model
The Markov model used high level aggregate data or data aggregates that comprised a
multitude or combination of freight, passenger ridership and service capacity data. These
operational data were collected by the Massachusetts Bay Transport Authority and the
Massachusetts Executive Office of Transportation in Boston[2]. It was made available to the
authors in 2013 for Markov analysis after a period of 12 months from its collection. The use
of aggregated data makes the assumption that the hypothesized relationship between the
transport demand variables in question is homogenous across all individual cases (Garrett,
2003). Therefore, our findings on capacity-demand relationships are not valid for any
individual variable (if less aggregated data were used). The aggregated capacity measure
we used is the number of vehicles operating in the Kendall square neighbourhood of
Cambridge (per hour).

Correcting for “aggregation bias” has received careful attention in the literature
(Goodfriend, 1992). Therefore the findings are restricted to an aggregated operational
perspective which is not generalizable to other city scenarios. It is only representative of one
city borough’s freight and passenger flows in one specific time period (May-August 2013)
and it is not replicable to other time periods of that city area. Further, no externalities were
factored into the model which might alter demand and supply patterns (e.g. season, climate,
tourism, vacations, students (out of term)). A classic example of the approach presented
here is the empirical work of Carroll et al. (1994) and Bram and Ludvigson (1998) who
forecast national personal consumption expenditures through a highly aggregated measure
of consumption.

Note that this section and the cited references herein, illustrate limitations of our
approach, as well as example of research using this approach. In this research, we are
concerned with aggregated traffic flows and centralized decision systems. Moreover, the
problem illustrated is to determine the optimal allocation of autonomous vehicle to satisfy
demand and capacity. As it is done by central authority and the use of aggregated data, we
did not consider modelling transportation routes, traffic lights, etc. However, it is possible to
augment the model to a hierarchical Markov model with augmented state space
representing routes and other constraints, and the solution principle will remain the same.
Approaches of using Markov models for short-term traffic forecasting are found in
literature as well (see e.g. Yu et al., 2003). The work of Büscher et al. (2009) is also relevant to
our this work; they have explored cumulative, collective and collaborative aspects of
mobility systems, and have illustrated challenges and opportunities in relation to practices
of collaboration. A number of our earlier works have considered both macro-level and micro-
level modelling and simulation of road traffic and transportation (see e.g. Alazawi et al.,
2011, 2012, 2014a; Ayres and Mehmood, 2009; Elmirghani et al., 2006; Mehmood, 2007;
Mehmood and Nekovee, 2007).

The model
A total of 18 scenarios were modelled based on various levels of transport demand and
capacities in a future city. Subsequently, we calculated precise probabilities for all future
states of each of the modelled scenarios. The analysis was designed along the lines of
providing answers to questions such as: “What transportation capacity should I have in order
to meet transportation demands of the city probability at P¼ α?” where α is the probability
with any value between zero and one. The framework also allowed practitioners to determine
the level of capacity sharing that is needed between various parts of the system.
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Consider further that a future transportation centre plans and manages its long-run and
short-run transportation capacity periodically by analysing the quantitative changes in the
demands, any related city activities, and historical trends. The short-run planning can be,
for example, on a quarterly, monthly, or daily basis based on city dynamics. The long-run
planning can be for a period of one year or more. The short-run and long-run planning can
be carried out by building Markov models and solving these models for their steady-state
numerical solution. Any real-time dynamics of the city are met by real-time planning
algorithms, for example, by solving Markov models for their transient solutions.
Optimization methods can also be employed, for example using MDPs. We focus here on the
steady-state solutions.

Let us denote the total transport demand of the city (in terms of the number of
autonomous vehicles) by λT. This is per hour demand in terms of the arrival rates with
exponentially distributed inter-arrival times. The total demand comprises λF (demand for
freight-related activities), λH (healthcare), λSL (shopping and leisure) and λW (work-related
transportation demand). All these demands are per hour, in terms of the number of
autonomous vehicles, with exponentially distributed inter-arrival times. Mathematically:

lFþlH þlSLþlW ¼ lT : (3)

Now assume that the total transportation demand for the city for weekdays is 4,800
autonomous vehicles per hour. Also, suppose that the transportation demand for the four
named activities, freight, health, shopping and leisure, and work are at a¼ 25 per cent,
b¼ 15 per cent, c¼ 25 per cent, and d¼ 35 per cent of the total transport demand,
respectively. Formally, we can write as:

lF ¼ 1;200 lT � að Þ; lH ¼ 720 lT � bð Þ; lSL ¼ 1;200 lT � cð Þ;

lW ¼ 1;680 lT � dð Þ; lT ¼ 4;800 (4)

Note that our methodology to model the transportation demand of a future city does not
depend on the number of transportation-related activities in the city (freight, work, etc.)
because you can add additional sub-demands for each new activity and include these in
Equations (1) and (2). Similarly, it is also possible to build separate models for each change
in the transportation demand, e.g. due to peak time and off-peak time demands, weekend
demands. Similarly, the quantity of demand and capacity does not affect our methodology.

A smaller figure of 8,000 vehicles per hour for transportation capacity is now used for
explanatory purposes otherwise theoretically any quantity of transportation demand
typical of a city can be modelled and numerically solved. For large demands, we can use the
range of techniques that we have developed over the years to deal with large models; see
Section “Computational Methods to Solve Large Models” for a discussion of the techniques
for solving large Markov chains.

The operations centre considered various scenarios and possibilities for variations in the
transportation demands in the city, included those discussed above (peak, off-peak,
weekend, shift of higher work-related demand in the morning towards higher shopping and
leisure-related demands in the evenings). They decided to build transportation capacity in
the city such that the typical workday demand is met by 60 per cent of the total
transportation capacity, that is:

mT � 0:6 ¼ lT ; mT ¼ 4;800
0:6

; mT ¼ 8;000: (5)

where μT is the total transportation capacity of the transportation system in the city. As for
the demand, μT represents the transportation service rates with exponentially distributed
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service times. The service rate or the transportation capacity is modelled in this manner to
take into account the random nature of shared capacity that would exist in a real city. So for
example, one area of transport demand (e.g. school-related transport) may have its peak time
in the morning while another area of transport demand (e.g. leisure-related transport) has its
peak in the evening. So the capacity from one area of transport demand can be shared by
another area of transport demand. Note that the term “capacity” in this paper is not strictly
meant to be the term “capacity” as is taken in queuing theory discipline and the Kendall’s
notation; rather it is meant to be the transportation capacity in terms of the vehicles per hour
that the transport operations centre is able to provide. The two connotations are interrelated
here but could cause confusion if the differences are not understood.

Considering the variations in transport demand, the transportation centre modelled a
number of scenarios ranging from λT¼ 1 (a transport demand of one vehicle per hour) to
λT¼ 8,000 (a transportation demand equal to the transportation capacity). We have
modelled a total of 18 such scenarios as CTMCs and have obtained the numerical solution
for their steady state vectors.

The lowest demand case scenario (λ¼ 1) is selected such that the demand is relatively
very small compared to the total capacity of the transport operation. This is to show that
such a system will have high probability of being in the near idle states. The worst case
scenarios represents a very high demand (λ¼ 7,990 and λ¼ 8,000 per hour) reaching very
close and equal to the total capacity of the transport operations centre. In total, 15 other
scenarios (λ¼ 500, 1,000, 1,500,…, 7,500) in between these extremes were modelled to
understand the dynamics of such a transportation planning and management centre.

Figure A1 gives the generic transition diagram of a CTMC applicable to all the 18
scenarios discussed earlier. The transition diagram depicts that the model has n+1 states.
The initial state (numbered 0) represents the case where there are no demands or requests
for vehicles in the system. The next state (numbered 1) represents the case where there is a
demand for one vehicle in the system, and so on. The last state (numbered n) represents the
case where the system contains the maximum number of jobs and is running at its full
capacity (μT). The states numbered J represent all the states between 4 and n−1.

The total number of states in the transition diagram (Figure A1) for all the 18 scenarios
will be the same, i.e. 8,001. The departure rates will depend on the particular state the
system is in, that is μi¼ i× μ, ∀0o i⩽ 8,000 where μ¼ 1. The arrival rates however will be
in accordance with the 18 scenarios, as mentioned earlier, λi¼ λ¼ 1,500, 1,000,…, 7,500,
7,990, 8,000, ∀0⩽ io8,000. Essentially, this Markov model represents an M/M/C queuing
system. Figure A2 gives the generator matrix (Q) of the CTMC model given in Figure A1.
The diagonal elements are highlighted in the blue and bold font. Given the matrix Q, the
steady state vector (π) of the system (containing probability distribution of all the system
states) can be calculated by solving the corresponding sparse system of linear equations as
given by Equation (2). The system of linear equations can be solved using stationary
methods like Jacobi and Gauss-Seidel (GS), and non-stationary methods such as conjugate
gradient, Lanczos, etc. We have used both the Jacobi and GS methods to solve large Markov
chains with over a billion states. Figure A3 gives the block Jacobi algorithm used to solve
the CTMCs, taken from our earlier work (Mehmood and Crowcroft, 2005); refer to the source
for details of the algorithm.

Results
We have used two separate figures (Figures 2 and 3) to make the results more
comprehensible. First, the results are explained from a low demand scenario of 500 vehicles
per hour. The horizontal axis is used for the states of the system. The vertical scale of
probability ranges between 0 and 1 (where 1E-00 is one and 1E-08 indicates a small
probability near zero).
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There are a total of 8,001 states in the system: state 0 to state 8,000. State 0 means that the
city transport system is idle and there is no vehicle demand in the system for autonomous
vehicles. State 1 implies that there is a demand for one autonomous vehicle per hour,
State 2 implies demand for two autonomous vehicles per hour, and so forth.
The final state number is 8,000, which implies that the transportation system is
operating at its full capacity with 8,000 autonomous vehicles being requested every hour
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by the city. As we have explained earlier, this modelled system is able to provide 8,000
vehicles per hour capacity.

Both the arrivals and departures have exponentially distributed inter-arrival and service
times. The vertical axis gives the stead y-state probabilities for the city transportation
system. There are a total of 8,001 states in the system: state 0 to state 8,000. The plot gives
the probability of the system to be in each of the system states for the scenario with 500
vehicles per hour demand. We have labelled some of the plot values with the number of
specific state and the associated probability.

The probability for such a system to be in state 393 is 1.0E-08. The probability
for the system to be in all the earlier states (states zero to 392) is zero. The absence of any
dots or line represents a zero probability. Subsequently, the plot shows an increase
in the non-zero probabilities, rising from the left of the plot to the values between
0.0001 (state 506) and 0.0002 (state 7,055), approximately. Finally, to the right, the
probabilities drop again to the value 1.0E-08 (state 7,102). The probabilities for states
7,105-8,000, all are zero. We have used 1.E-08 as the vertical scale limit, and the
logarithmic scale to make the graph comprehensible. The states with zero probability
imply that the system will never reach to these states. For higher numbered states
(7,105-8,000), it demonstrates that the system is fairly stable, will comfortably deal with
its load, and will not fail.

Figure 3 visualizes all the 18 scenarios that we have considered in this paper. Each
scenario is represented by a plot. As before, the horizontal axis is used for the states of the
system (a total of 8,001 states) and this modelled system is able to provide 8,000 vehicles per
hour capacity. The vertical axis gives the steady-state probabilities for the city
transportation system. Each of the 18 plots gives the probability of the system to be in
each of the system states for the particular scenario.

Consider the plot for the lowest demand case scenario with the transport demand of
one vehicle per hour (the bottommost plot in blue colour). The probability for such a
system to be in state 0 (idle system) is 32.09 per cent and to be in state 1 is 32.19 per cent.
Note here that state zero means that there is no outstanding vehicle demand in the
system. It does not mean that the system in this state does not receive a demand for a
vehicle. Such cases are possible where there is a high capacity for service and relatively
very low demand for jobs. In other words, the system in the lowest demand scenario may
remain idle with a high probability, 32.09 per cent, though the service demand may arrive
and be satisfied. However, note also that this system, in fact, may remain in state 1 (with
one job in the system) with slightly higher probability, 32.19 per cent. The probabilities
for this system to be in other states are around 1.0E-05, except for the states 7,000 and
beyond, where the probability is almost zero (this can be seen by the sharp drop towards
the right of the plot and, afterwards, the absence of line).

The scenario for the lowest demand (one vehicle per hour) demonstrates a case of very
low demand (e.g. low arrival rate), relatively, compared to a very high capacity (e.g. very
high service or departure rate). Such a system is highly likely to be in one of the first two
states (32.09%+32.19%) because the total demand is one vehicle per hour and it may get
served as soon as it arrives. Note in the figure a different trend between scenario 1 and all
other scenarios. This is due to the fact that the increase in the demand is 500 times
(500¼ 1× 500) compared to the other scenarios where the highest increase in the demand
is two times (1,000¼ 500× 2). That is, each next scenario uses demand with an increase of
500 and therefore, with the increasing demand, each next scenario represents a smaller
increase in demand compared to the previous scenario (e.g. 500/1,500o500/1,000).
Another way to look at it is that for scenario one the system load is almost zero,
while scenario 500 represents, relatively, a fair amount of load. We have verified these
justifications by solving relevant models and plotting results for models with a linear
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increase in demand, i.e., 1, 2, 4, 8, 16 and so on. Also consider that the vertical axis is
plotted using a logarithmic scale.

The plots for the other transportation demand scenarios represent behaviour similar to
the system with the demand of 500 vehicles per hour except that the plots shift towards the
right with the increase in the demand. While the system with 500 vehicles demand has non-
zero probabilities beginning from state 393, the system with 1,000 vehicles demand has its
first non-zero probability from state 737. Moreover, the probability values for higher
numbered states (7,000 and beyond) also increase as can be seen by the delay in the drop of
the probabilities towards the right of the plots. The plots for the scenarios with transport
demands of 7,990 and 8,000 vehicles show a continuous increase in probabilities towards the
higher numbered state. These two plots, as opposed to all the other plots, do not show a drop
towards the right, implying that the system will have the highest probability to be under full
load, and therefore would be at risk of not meeting its demand. Such a system is at high risk
of reaching instability and this scenario/condition should be avoided. We address this
problem in the next section.

Dynamic configuration of capacity sharing
To further clarify the system behaviour depicted in Figure 3, we note that it is best for the
transport system to be in the idle (or near idle) state with the highest probability; as is the
case for the lowest demand scenario. However, though such a case represents a low risk of
failure, it does also represent a case of low resource utilization and hence wastage
of resources. On the other hand, the case of highest demand scenario represents a high risk
of failure (e.g. the system may not be able to provide service to its customers and can
become unstable), while allowing a high level of utilization. Transport managers would like
the probabilities of the higher numbered states to be zero, implying a low risk of failure.
However, they would also like a high level of utilization to justify a higher return on
investment. Our framework allows the practitioners to specify the level of sharing, a precise
probability for the system utilization and risk and provides them with estimates of the
required level of capacity. This can be done in an automated control manner, and if needed
the level of sharing and capacity could be altered based on the real-time demand.

Table AI lists the probabilities for the last few states of the highest demand scenarios
(states 7,974 to 8,000 of the scenarios with demands of 6,000, 6,500, 7,000, 7,500, 7,990 and
8,000 vehicles per hour). Note that all the probabilities of the given final states for the
scenario with the demand of 6,000 vehicles per hour (scenario 6,000) are zero. It means that
the transport system for this scenario with the total capacity (μT) of 8,000 vehicles per hour
will comfortably deal with the demand, and will not be at risk of reaching instability or
failure. For scenario 6,500, the transport system could be in states 7,974 or 7,975 with a small
probability 1E-08, and with zero probability in states 7,976 to 8,000. It implies that the
transport system for this scenario will also be able to deal with the associated demand of
6,500, and will not become unstable.

The data in Table AI for the other scenarios can be explained similarly. We focus here on
the scenario 8,000 (the last column). The data for this scenario shows that the transport
system could be in any of these states with a total probability of 0.87 per cent
(0.000324× 27¼ 0.008748). Now suppose that the transport system manager wishes to
avoid any risk for the system to reach instability and to achieve this goal the manager looks
to provision additional transportation capacity for the system. The model and method to do
so are explained in the rest of this section.

Let us generalize Equation (3) into the following equation for transport demand:
X

1p jpm

l1 tj
� �þ

X

1p jpm

l2 tj
� �þ

X

1p jpm

l3 tj
� �þ . . . þ

X

1p jpm

ln tj
� �

(6)

87

A Markovian
approach



www.manaraa.com

where λ1(tj) is the demand for activity one for the time period “j”, λ2(tj) the demand for activity
two for the time period “j”, and so on up to the activity “n” (a finite integer). The time period “j”
varies between one and a parameter “m”. The parameter “m” can be selected by the system
designers to optimize granularity of control, efficiency, and system complexity.
One possibility is to set “m” equals to the number of hours in the day (i.e. 24). So demands
will be monitored on an hourly basis and there will be a maximum of 24 demands for activity
one; that is; λ1(tj), 1⩽ j⩽ 24. In this case, the demand for an activity, for a given time
period, could be zero or non-zero (consider the demand for e.g. school-related transport).
The other possibility is to fix the parameter “m” equals to one. In this case, the transport
system will be a simpler system but the granularity of control, and hence efficiency, would be
limited. Similarly, periods smaller than one hour are also possible, and will provide a higher
level of granularity for control and transport operations efficiency (but this depends
on the nature of city transport). The total demand of the system given in Equation (6) can be
written as:

lT ¼
X1p ipn

1p jpm

li tj
� �

(7)

Similarly, the total transportation capacity of the system can be calculated by the following
equation:

mT ¼
X1p ipn

1p jpm

mi tj
� �

(8)

where μi(tj) represents the transportation capacity with exponentially distributed service
times for activity “i” for the time period “j”. These capacities and demands can be acquired
by the system in a distributed and autonomous manner where the sources of the demands
and capacities can update the transport system through an API. The quality of the
information regarding capacities and demands can be validated through distributed
systems technologies such as technologies related to trust. Alternatively, strict
authorization based approaches, or a middle approach can be used based on the specific
requirements.

Once the capacities and demands have been specified as above, the transport
management system can use a computer algorithm to look for additionally available
capacities with mutually exclusive time periods; i.e., the time period “tj” should not be the
same for the additional transportation capacity, otherwise it would have already been
included in the current transportation capacity. Certainly, there should be a system
record for each transportation capacity μi(tj) as to where it is being used for other than
their primary purposes. Capacity sharing can be further optimized for various system
characteristics or constrains such as cost, sustainability, trust level in the capacity
provider, appropriateness of the vehicles for the required purpose, etc.

Figure 4 gives the steady-state probabilities for the scenario with transport demand of
8,000 vehicles per hour. This is the same scenario as we have discussed earlier in relation to
Figure 3. However, this time, the transportation capacity has been increased to 10,000
vehicles per hour. Some of the plot values are labelled with the number of states and the
associated probabilities. Compare these results with the results for scenario 8,000 in
Figure 3. For instance, the probability for the system to be in state 9,951 is 1.0E-08, while the
probabilities for the states numbered 9,961 up to 10,000, all are zero (shown by the absence
of the plot). Note particularly that the probability has gone to zero before state 10,000 which
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implies that the system, whilst providing high resource utilization, has zero probability for
the last few states and therefore this system will not be at risk of instability.

The additional capacity could be provisioned through sharing, procured through the
procedure explained above. The level of transport capacity required to provide stability
higher than the original scenario 8,000 (Figure 3) was calculated by solving a range of
Markov chains with different levels of capacities and a fixed level of demand (8,000). This
procedure was stopped when a satisfactory level of system stability was found. In this case,
the required capacity for the system is 10,000 vehicles per hour.

To summarize: the overall system behaviour depicted by Figures 2-4 shows that a
higher number of vehicle demand will lead to higher probabilities for the system to be
under full load. The model provides precise probabilities (we have used double precision
number format for higher accuracy of probability values) for the system to be in any of
the 8,000 states under a range of workloads. We have modelled 18 scenarios, although
our approach allows each of the 8,000 scenarios to be modelled and their associated
precise probabilities to be calculated. Therefore, we can ask such a system to provide
answers to questions such as “What transportation capacity should I have in order to
meet transportation demands of the city with (e.g.) 80% probability?”. The probabilities
used in these queries can be for individual states or aggregated probabilities for multiple
states. The Markov model scenarios essentially represent the M/M/C systems.

A smaller figure of 8,000 vehicles per hour for transportation capacity is used for
explanatory purposes. Any quantity of transportation demand typical of a city can be
modelled and numerically solved using the range of techniques that we have developed (see
Section “Computational Methods to Solve Large Models”). Moreover, our methodology to
model the transportation demand of a future city does not depend on the number of
transportation-related activities in the city (leisure, school, etc.); additional sub-demands for
new activities can be added to the model.

The approach to computing the numerical solution of the underlying Markov chains
allows the practitioner to obtain detailed information about the system as compared to
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simple analytical results for the number of jobs in the system and response times.
The city planners or managers can explore and compute a set of shared capacities that
are sufficient, probabilistically, to meet the required transport demands for usual city
conditions or a specific situation. Therefore, our framework can be used by the
transportation planners and managers to have greater insight into the system and higher
efficiencies through a pool of resources that can be shared across various transportation
activities in the city; e.g. the transportation capacity for work and school-related
demands in the morning can be used in the evening for shopping and leisure-related
transportation demands.

Discussion
The Markov solution is focussed on matching the transport demands (of people
and freight mobility) with city transport service provision. This model and its solution
were designed to illustrate how sharing transport load in a smart city can improve
efficiencies in meeting real-time demand for city services. A smart city environment
enables the production and use of such data in the provision of services in these cities.
The fast-growing data generated in an online community-like setting is shared across the
city network amongst industry, the public and transport-service operators. On the
one hand this enables local governments, businesses and other organizations to act
smartly by processing the data to provide transport load sharing services that respond to
emerging needs within cities; and on the other hand, it allows citizens to take
an active role in data sharing with service providers and providing real-time feedback
on services.

Theoretical contribution
The paper aims to make a contribution to theory by modelling the potential of the smart city
to facilitate a city-network perspective to capacity sharing decision making. This is more
efficient than individual firms taking independent decisions, as this often leads to
duplication and inefficiency with transport capacity failing to meet volatile and rapidly
changing demand.

It is well acknowledged that a large amount of data are generated within smart cities
(Manville et al., 2014). However, there is no attempt at exploring the interplay between
smart cities, big data and city logistics sharing. Therefore, we contribute to existing
theory on related logistic issues such as RFID tags (Zelbst et al., 2012), information
infrastructure capability (Sook-Ling et al., 2015); and administrative data collected
directly from citizens, traffic management systems and carbon footprints (Batty, 2013).
Although there is a significant body of work at the strategic level, what is missing is the
detailed operational implementation of decisions based on big data (analytics).

Moreover, while previous work focusses on the issues of sources and capture
(Kitchin, 2014) the issues of volume and velocity are not focussed upon theoretically.
We go further in our work’s analytical scope by providing detailed insight into
how big data could be analysed and operationally implemented within the smart city.
This will enable more effective capacity decision making. While numerous studies
claim to highlight the value of big data (Davenport, 2013), they do not provide operational
evidence.

Whilst the importance of sampling data to make operational decisions is a
well-established construct (Taniguchi, 2012), what is less understood are the two main
kinds of velocity with respect to big data: first, the frequency of generation; and second,
frequency of handling, recording and publishing. Our smart city operations model mediates
the role of velocity on system performance (Leonardi, 2012). Furthermore, we also extend
fairly simplistic considerations of data veracity. This is achieved by indicating the risks and
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challenges its complexity poses to effective operational decision making (the significant
differences in its coverage, accuracy and timeliness). For instance, one cannot assume, as is
often outlined in leading works (Kitchin, 2014), that collecting more data will automatically
correlate with a better performing operational model.

Previous attempts to model big data logistics have been based on empirical data
gathered from small sample sizes (Fosso-Wamba et al., 2015; Taniguchi, 2012). These and
other works omit theoretical considerations of the variety dimension. Through our
Markovian analysis of aggregated structured and unstructured data, we worked with data
collected from a population (n¼ all) rather than a sample and therefore the developed model
both focusses and is built on data variety.

In addition, our work complements that of Fosso-Wamba et al. (2015) and Setia and Patel
(2013), who explore the role of big data in building operational capabilities and the
absorptive capacity of logistic operations. Their research findings underscore the
importance of integrating big data into city logistics design. They argue for greater
integration between big data and OM and encourage advancing new theories at the big
data-OM interface. We are therefore extending the adoption literature to the sub-field of big
data and city logistics research. Through this modelling study, we are building new
knowledge on the inter-relationships between big data capabilities, load sharing, absorptive
capacity and city transport planning capabilities.

We have endeavoured to provide a new understanding of load sharing and optimization
in a smart city context. Specifically through demonstrating how big data could be used to
improve operational efficiency in meeting demand and also lowering over-capacity. The
work suggests how improvement could take place by having a (private[3]) car free city
environment with autonomous vehicles and shared resource capacity among providers.
Although researchers have begun to assess OAC capabilities of big data, their antecedents
are still not well examined.

Implications for smart city operations practitioners
The developments in technologies such as 4G wireless, Fibre to the x (FTTX), IoT, mobile
computing, cloud computing and big data are enabling new design models of future city
operations systems. Smart city practitioners must make the best use of these emerging
technologies to improve their operational efficiency and environmental performance. The
city logistics aspects point to how transportation would actually need to be re-organized so
as to deal with the CO2 footprint.

Big data are typically seen by the private sector as an enhanced form of business
intelligence or enhanced data analytics capability (Kitchin, 2014). However, the model
proposed here is embedded in the operational sharing economy (Li et al., 2016) and this
paper could be seen in the applied sense, as a move from individual firms optimizing their
own transportation supply to a shared collaborative load system. As MIT’s (Caplice,
2015) recently noted in the Wall Street Journal such ideas are radical changes for
practitioners and are driven by the growth of the sharing economy and the trend away
from scale economies based on global systems to more decentralized local transport
solutions.

Power and governance in such a system would be transferred more to the city
authorities, public organizations and local citizens away from profit-driven individual firms
(Taniguchi, 2012). 3PL firms operating as “last mile” delivery operators within the city
boundary would in a sense lose business unless they could encompass the sharing economy.
They would also need to be willing to share business intelligence, their freight capacity and
utilize the shared network offerings. These changed interaction patterns would, therefore,
transform current city network actor interaction systems, with geography increasing the
impact on interaction decisions.
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Barton and Court (2012) highlighted that the key OM challenge for smart city
practitioners in using big data is to ensure that it is trustworthy and understandable
for all their employees. Shah and Pathak (2014) for example, suggests that
advanced business analytics skills are still largely confined to an expert level.
In order to add value from using big data, it is, therefore, essential that all levels of
practitioners are well equipped to make crucial strategic and operations decisions using
big data (which can be only be achieved through specialist training). Similarly,
while organizations might have access to reliable information, owing to the lack
of clear and coherent content, practitioners could find it difficult to locate this properly
as/when needed.

Smart city practitioners need to emphasize the finding of the right skills including
technical, analytical, governance skills and networked relationships if they are to
optimize their implementation of big data (Schroeck et al., 2012). As argued by
McAfee et al. (2012) the enormous amount of big data requires cleaning and organizing,
which necessitates recruiting technically and analytically sound data scientists.
Practitioners should make sure that smart city data scientists are well conversant
about business and governances issues and the necessary skills to talk in the language of
business. The findings show that data scientists should be trained to build networked
relationships which are an important skill (Davenport, 2014). As such, practitioners
should grow, nurture and retain their smart city data scientists in order to grasp
regular opportunities. Another challenge of using big data for practitioners is to develop
both their technology infrastructure and business processes in the initial phase
(Batty, 2013). To strengthen this aspect of personnel expertise capability, an organized
effort must be made to build technical knowledge, technological management knowledge,
business knowledge and relational knowledge related to big data logistics (Fosso-Wamba
et al., 2015).

This study also urges practitioners to ensure safe handling of individual and
organizational privacy in the context of big data. For example, keeping individual and
business customer name, address, market, operational and financial information
confidential and undisclosed to third parties. This poses an enormous challenge for big
data logistics (Kitchin, 2014). In this regard, McAfee and Brynjolfsson (2012) highlighted
that the privacy concern is becoming more significant in this environment and should
receive greater attention.

Implications for future cities’ SCM
The successful modelling of the Markov model in this study is premised on a big data
operations framework which celebrates an enhanced interconnectivity between its
components. It is assumed that customers, information management infrastructure and
transport services would share in a mutually supportive reciprocity. This smart cities
transportation strategy thus introduces contextual discontinuity in the sphere of OM.
This new contextual environment calls for greater collaboration and integration between
the system’s actors for its effective functioning. From an OM perspective, this calls for
greater emphasis on supply chain integration (SCI) (Prajogo and Olhager, 2012),
particularly given that this scenario affords the operations managers limited direct
control over information and transportation assets, if companies are to reap the benefits
of the big data resources and more specifically the notion of load sharing as these
would be controlled by a third party, the city manager. Nevertheless, we share the
conviction that up-to-date information about transportation capacity and demand could
potentially be a valuable asset to firms and could be used in enhanced logistics planning
(Foresti et al., 2015; Ruiz-Torres and Nakatani, 1998) to provide customized solutions
based on the specificities of individual cities. Furthermore, updated information on an
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hourly basis could potentially be integrated into logistics activities to respond to
fluctuations in transport capacity in real-time and thus provide flexibility and
greater supply chain agility (Zhang et al., 2011). However, the real challenge lies in
procuring and managing this intelligence in the context of this new “smart cities
landscape” (Angelidou, 2014).

Contingency theory suggests that an organization must be aligned with its internal as
well as external environment to achieve optimal performance (Chong and Rundus,
2004; Hayes, 1977, p. 19). Thus, applied to SCI, contingency theory suggests that the
individual dimensions of SCI should be aligned, in order to achieve the best performance.
In terms of external fit, the contingency theory indicates the need for consistency
between an organizational structure and the strategy it pursues in response to its
external environment (Flynn et al., 2010). At an operational level, this means that a
manufacturer should respond to changes in its external environment by developing,
selecting and implementing strategies to maintain fit (Kotha and Nair, 1995; Tushman
and Nadler, 1978). Therefore, in the context of smart cities transportation solutions based
on the framework presented, we predict the need for greater integration of 3PL
(Birou et al., 2011).

Whilst the practice of integrating 3PL in the focal firm’s supply chain is not new the
unique contextual features of future cities, in particular, the introduction of the city
manager variable, puts an accentuated emphasis on relational capital (Chen and Hung,
2014; Li et al., 2014). In this scenario, the implication for future SCM is that efficient
operations would depend on the ability of managers to build effective collaborations with
the transport/logistics provider, other firms in the supply chain, as well as the city
manager in order to harness value from the big data information. Therefore, in this new
domain, relationship and trust building (Prajogo and Olhager, 2012) would probably take
centre stage. This is because, this new way of functioning would require a high degree of
openness (Gunasekaran et al., 2007) of potentially sensitive operations activities
involving a high level of information sharing, and in all likelihood, frequent and
intense communication between firms, transport/logistics provider and city managers.
In effect, in addition to 3PL integration, information integration (Cagliano et al., 2006)
would also feature prominently as a determinant of an organization’s supply chain
performance in the context of future cities. Therefore, the contingencies created by a
smart city transportation environment would impose on OM the need for greater and
perhaps more sophisticated integration of logistics and information. However, alignment
with this external environment would also have implications for the internal workings of
supply chains.

The implications for the internal alignment of future OM can be viewed through the
lens of IT-enabled supply chain (Rai et al., 2006). Because the imperative of sharing at the
heart of external fit, any internal changes would need to share the same philosophy.
Under the banner of IT-enabled supply chain, previous work has indeed accentuated the
importance of communication and application of IT in SCM (Gunasekaran and Ngai,
2004) for the purpose of SCI. For example, Rai et al. (2006) offer a model that examines
how IT infrastructure could be usefully leveraged to harness value from information
integration and hence improve supply chain process integration leading to superior
firm performance.

The work of Prajogo and Olhager (2012) is also pertinent to this conversation. In this
work, the authors show that two aspects of information integration, namely, IT
capabilities for connectivity and information sharing, have positive effects on logistics
integration. As we have argued, a smart city’s transportation solution based on big data
resources brings with it a shift in the operational paradigm towards a more collaborative
modus operandi (Clegg et al., 2013). Thus, the implication for SCI from an internal
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alignment perspective of contingency theory potentially resides in how to leverage IT
resources in building more transparent supply chains which are based on meaningful
and trustworthy relationships while preserving economic viability. It is interesting that
Prajogo and Olhager (2012, p. 519) observed a low correlation between IT capabilities and
information sharing which suggests “that firms cannot assume that because they are
technically connected, they are also socially connected”. Whilst it is unequivocal that IT
capabilities integration would have a defining role in a future cities SCM context,
we agree with Rai et al. (2006) that this would need to be complemented by the integration
of other relationship management capabilities in order to extract value from the unique
big data environment discussed in this work. Therefore, while smart cities might well
epitomize the frontier of technological innovations applications in addressing future
cities needs, including transportation, future solutions might well be rooted in a
distinctively human judgement, that is, trust.

Conclusions
The initial research aim of this paper was to investigate how big data are transforming
smart city transport operations. In meeting this aim, the research relied on
Markov modelling and numerical solutions. There are risks and challenges with
smart city operations and big data (Kaplan and Mikes, 2012). Even bearing this in mind,
as the prominence of big data continues to develop and stakeholder groups become
increasingly knowledgeable and engaged, there are considerable incentives for
operations managers to achieve value added improvement (Fosso-Wamba et al., 2015).
This could be through transforming their operations models from transactional to
sharing systems and the extracting of new forms of operational value from the big data
(Li et al., 2016).

The networking technologies such as FTTX and LTE are enabling fast access to
remote computational and storage resources, allowing operators to share data in near
real-time. This is in contrast to the past where several data islands existed and access to
these data islands were slow or non-existent. This hindered synchronisation, sharing and
use of data for multiple purposes across and between various city management-related
systems (Mehmood et al., 2015). IoT and sensor networking technologies will provide
the logistics pulse of future cities. It will allow future cities to be monitored and controlled
in real-time. Mobile computing is allowing computing intensive tasks to take place on
small devices that we carry around and the devices that are embedded in our static and
mobile environments. Cloud computing is enabling computing to be provided as an on-
demand elastic utility accessible through any device and with minimal management
effort. New hardware architectures such as GPUs, field-programmable gate array and
Cell Broadband Engine Architecture (Cell BE) are providing huge amount of
computational power for us to solve increasingly large OM problems (Mehmood and
Lu, 2011). Furthermore, the emerging computational units are much more reconfigurable
today compared to the single core machines of the past, although the complexity of the
design space for software developers is also increasing. All these technologies have
given rise to big data, its associate challenges, as well as providing opportunities to
address those challenges. We believe that modelling realistic, complex and large smart
city-problems require significantly advanced big data computational intelligence which
is possible today due to the advancements in computations, both hardware and software.
However, significant efforts are required to translate raw computational power into
operational intelligence.

Notwithstanding, operational intelligence on its own has little value in solving
future cities problems unless it can be leveraged into useful capabilities. We have argued
from the vantage point of future cities supply change management emphasizing
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that the growth in the sharing economy would change the dynamics of supply chain
operations. In a smart cities landscape, firms would need to maintain external and
internal alignment (Gonzalez-Benito and Lannelongue, 2014). Against a backdrop
of the transportation solution presented, this would translate in greater integration of the
operational intelligence in the form of logistics and information in the focal firm
supply chain. However, our analysis shows that in spite of the coming of age of
technological solutions in the smart cities context, and in spite of the predictive
proclivities of the Markov process, it would be ill-advised to ignore the significance of the
flesh of blood cosmopolitans of future cities. In fact, in this new city landscape, high-
value social relationships might well be viewed as complementary resources to
technological infrastructure in forging future cities SCM capabilities.

More in-depth analysis and more discrete modelling are clearly needed to assist
in the implementation of big data initiatives. Some of the changes that operations and
their connected logistic chains face are revolutionary and this requires careful
consideration from both a practical and theoretical point of view. To advance this
Markovian work, three types of research are urgently needed to extend our preliminary
results. First, intensive case studies of the transformation of traditional city logistic
systems and the development of new big data operations models. These need
to be identified and documented. The description of the new models and the rich
context in which these new models are embedded will provide a deep insight to
researchers and practitioners in exploring similar opportunities and challenges in
their own domains.

Second, new analytical frameworks, tools and techniques need to systematically capture
relevant data and generate reliable insights to inform operational and strategic decision
making of operations managers (Slack and Lewis, 2011). Some existing frameworks and
tools can be adapted for big data but new ones need to be developed to address emerging
opportunities.

Third and perhaps most importantly, is new theoretical and empirical research about the
transformation of traditional city operations models and the emergence of new ones in the
big data space. Big data provides the ideal environment for a range of new innovations at
the interface between big data and operational activity.

This paper coupled with our earlier work on the solution of large Markov models
provides a promising approach for big data technologies and solutions. Whilst we have
primarily addressed the volume and velocity challenges, through intelligent storage and
parallel computing techniques, we need also to aim to explore the value, veracity and variety
challenges of big data.

Notes

1. The internet of things (IoT) is the network of physical objects or “things” embedded with
electronics, software, sensors and connectivity to enable it to achieve greater value and service by
exchanging data with the manufacturer, operator and/or other connected devices. Each thing is
uniquely identifiable through its embedded computing system but is able to interoperate within
the existing internet infrastructure.

2. The Markov study formed part of a three month research investigation exploring future city
logistics at MIT’s Centre for Transportation and Logistics (www.nemode.ac.uk/?page_id=740).

3. It is possible that future cities will continue to allow people to own autonomous cars but we believe
that technology will allow the creation of micro-services which will be available dynamically with
almost zero human (visible) intervention and administrative time. This will allow people to rent
cars and avoid parking and other disadvantages of owning cars.
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State 6,000 6,500 7,000 7,500 7,990 8,000

7,974 0 1E-08 2.15E-06 6.54E-05 0.000318 0.000324
7,975 0 1E-08 1.98E-06 6.3E-05 0.000318 0.000324
7,976 0 0 1.83E-06 6.06E-05 0.000317 0.000324
7,977 0 0 1.68E-06 5.82E-05 0.000317 0.000324
7,978 0 0 1.55E-06 5.59E-05 0.000317 0.000324
7,979 0 0 1.42E-06 5.36E-05 0.000317 0.000324
7,980 0 0 1.31E-06 5.14E-05 0.000316 0.000324
7,981 0 0 1.2E-06 4.92E-05 0.000316 0.000324
7,982 0 0 1.09E-06 4.71E-05 0.000316 0.000324
7,983 0 0 1.0E-06 4.51E-05 0.000316 0.000324
7,984 0 0 9.1E-07 4.31E-05 0.000315 0.000324
7,985 0 0 8.3E-07 4.11E-05 0.000315 0.000324
7,986 0 0 7.6E-07 3.92E-05 0.000315 0.000324
7,987 0 0 6.9E-07 3.74E-05 0.000314 0.000324
7,988 0 0 6.2E-07 3.56E-05 0.000314 0.000324
7,989 0 0 5.6E-07 3.38E-05 0.000314 0.000324
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7,998 0 0 2.1E-07 2.04E-05 0.000311 0.000324
7,999 0 0 1.8E-07 1.92E-05 0.00031 0.000324
8,000 0 0 1.6E-07 1.8E-05 0.00031 0.000324

Table AI.
Probabilities for the

last few states of
the highest demand

scenarios (states
7,974 to 8,000)
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